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Summary. Autopilots for small UAVs are generally equipped with low fidelity sen-
sors that make state estimation challenging. In addition, the sensor suite does not
include units that measure angle-of-attack and side-slip angles. The achievable flight
performance is directly related to the quality of the state estimates. Unfortunately,
the computational resources on-board a small UAV are generally limited and pre-
clude large state Kalman filters that estimate all of the states and sensor biases.
In this chapter we describe simple models for the sensors typically found on-board
small UAVs. We also describes a simple cascaded approach to state estimation that
has been extensively flight tested using the Kestrel autopilot produced by Procerus
Technologies. Our intention is to provide a tutorial of continuous-discrete Kalman
filtering with application to state estimation for small UAVs.

High fidelity estimates of the position, velocity, attitude, and angular rates
are critical for successful guidance and control of intelligent UAVs. The achiev-
able fidelity of the state estimates depends upon the quality of the sensors
on-board the UAV. Unfortunately, high quality sensors are usually heavy and
expensive. This is particularly true for sensors that directly measure the atti-
tude of the UAV. In this chapter we focus on the problem of state estimation
using light weight, inexpensive, low quality sensors. In doing so, our target
platforms are small and micro air vehicles with limited payload capacity.

In recent years, several autopilots for small UAVs have appeared on the
commercial market. These include the Procerus Kestrel [4], the Cloudcap Pic-
colo [2], and the Micropilot MP2028 [3]. Each of these autopilots use the
following sensors:

• rate gyros,
• accelerometers,
• pressure sensors, and
• GPS.

We will assume throughout this chapter that these are the only sensors that
are available for state estimation.
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The limited payload capacity of small UAVs not only restricts the type and
quality of the sensors, it also limits the computational resources that can be
placed on-board the UAV. For example, the Procerus Kestrel autopilot has an
8-bit Rabbit microcontroller with 512K of memory. Therefore, Kalman filters
that estimate all of the states as well as the sensor biases are not feasible. The
objective of this chapter is to describe simple attitude estimation techniques
for small UAVs that require limited computational resources.

The chapter will be organized as follows. In Section 1 we define and briefly
describe the states that need to be estimated. In Section 2 we describe the
sensors that are generally available on small UAVs and develop mathematical
models of their behavior. Section 3 briefly describes the simulation environ-
ment that is used to demonstrate the algorithms described in this chapter.
Section 4 describes simple state estimation techniques that use digital low
pass filters and sensor model inversion. In Section 5 we provide a brief re-
view of the continuous-discrete Kalman filter. Finally, Section 6 describes the
application of the continuous-discrete extended Kalman filter to roll, pitch,
position, and heading estimation.

1 UAV State Variables

Aircraft have three degrees of translational motion and three degrees of rota-
tional motion. Therefore, there are twelve state variables as listed below:

pn = the inertial north (latitude) position of the UAV,
pe = the inertial east (longitude) position of the UAV,
h = the altitude of the UAV,
u = the body frame velocity measured out the nose,
v = the body frame velocity measured out the right wing,
w = the body frame velocity measured through the belly,
φ = the roll angle,
θ = the pitch angle,
ψ = the yaw angle,
p = the roll rate,
q = the pitch rate,
r = the yaw rate.

The state variables are shown schematically in Figure 1. As an alternative to
expressing the velocity vector as (u, v, w)T , it can be expressed in terms of
the airspeed Va, the angle-of-attack α, and the side-slip angle β. The trans-
formation between the two representations is given by [22]
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Fig. 1. This figures depicts some of the UAV state variables. The forward velocity
u and the roll rate p are defined along the roll axis which points out the nose of the
UAV. The side slip velocity v and the pitch rate q are defined along the pitch axis
which points out the right wing of the UAV. The downward velocity w and the yaw
rate r are defined with respect to the yaw axis which points out the belly of the
UAV. The Euler angles are defined by first yawing ψ about the yaw axis, pitching
θ about the transformed pitch axis, and finally rolling φ about the transformed roll
axis.




u
v
w


 = Va




cosα cosβ
sin β

sin α cosβ


 . (1)
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u2 + v2 + w2
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u

)
(2)

β = tan−1

(
v√

u2 + w2

)
.

There are several other quantities that are also of interest for guidance and
control of UAVs including the flight path angle γ, the course angle χ, and the
ground velocity Vg. The flight path angle defines the inertial climb angle of
the UAV and is given by

γ = θ − α cosφ− β sin φ.

Note that in wings level flight, this formula reduces to the standard equation
γ = θ − α. The course angle defines the inertial heading of the UAV which
may be different than the yaw angle ψ due to wind. If (wn, we)T is the wind
vector in the inertial frame, then we have the following relationships
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The kinematic evolution of the Euler angles are given by [22]




φ̇

θ̇

ψ̇


 =




1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)







p
q
r


 , (3)

and the navigational equations of motion are given by

ṙn = Va cos ψ cos γ + wn = Vg cosχ (4)
ṙe = Va sin ψ cos γ + we = Vg sin χ (5)

ḣ = Va sin γ. (6)

2 Sensor Models

This section derives mathematical models for sensors typically found on small
and micro UAVs. In particular, we discuss rate gyros, accelerometers, pressure
sensors, and GPS sensors.

2.1 Rate Gyros

A MEMS rate gyro contains a small vibrating lever. When the lever undergoes
an angular rotation, Coriolis effects change the frequency of the vibration, thus
detecting the rotation. A brief description of the physics of rate gyros can be
found in Ref [9, 15, 23].

The output of the rate gyro is given by

ygyro = kgyroω + βgyro(T ) + ηgyro,

where ygyro is in Volts, kgyro is a gain, ω is the angular rate in radians per
second, βgyro is a temperature dependent bias term, and ηgyro is a zero mean
Gaussian process with known variance. The bias term βgyro(T ) is a function of
the temperature T and can be effectively determined by use of a temperature
chamber before flight.

If three rate gyros are aligned along the x, y, and z axes of the UAV, then
the rate gyros measure the angular body rates p, q, and r as follows:
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ygyro,x = kgyro,xp + βgyro,x(T ) + ηgyro,x

ygyro,y = kgyro,yq + βgyro,y(T ) + ηgyro,y

ygyro,z = kgyro,zr + βgyro,z(T ) + ηgyro,z.

We will assume that kgyro,∗, βgyro,∗(T ), and the covariance of ηgyro,∗ have
been determined a priori and are known in-flight. MEMS gyros are analog
devices that are sampled by the on-board processer. We will assume that the
sample rate is given by Ts. As an example, the Procerus Kestrel autopilot
samples its rate gyros at approximately 120 Hz.

2.2 Accelerometers

A MEMS accelerometer contains a small plate attached to torsion levers. The
plate rotates under acceleration which changes the capacitance between the
plate and the surrounding walls. The change in capacitance is proportional to
the linear acceleration [1, 23].

The output of the accelerometers is given by

yacc = kacca + βacc(T ) + ηacc,

where yacc is in Volts, kacc is a gain, a is the acceleration in meters per second
squared, βacc is a temperature dependent bias term, and ηacc is zero mean
Gaussian noise with known variance.

Accelerometers measure the specific force in the body frame of the vehicle.
A physically intuitive explanation is given in [22, p. 13-15]. An additional
explanation is given in [19, p. 27]. Mathematically we have




ax

ay

az


 =

1
m

(F− Fgravity)

= v̇ + ω × v − 1
m

Fgravity.

In component form we have

ax = u̇ + qw − rv + g sin θ

ay = v̇ + ru− pw − g cos θ sin φ

az = ẇ + pv − qu− g cos θ cos φ.

The output of an accelerometer is usually in units of [g], therefore kacc =
1/g. The output of the accelerometers are therefore given by
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yacc,x =
u̇ + qw − rv + g sin θ

g
+ βacc,x(T ) + ηacc,x

yacc,y =
v̇ + ru− pw − g cos θ sin φ

g
+ βacc,y(T ) + ηacc,y (7)

yacc,z =
ẇ + pv − qu− g cos θ cos φ

g
+ βacc,z(T ) + ηacc,z.

(8)

As with the rate gyros, we will assume that the biases and noise statistics are
known and available in-flight. MEMS accelerometers are analog devices that
are sampled by the on-board processer. We will assume that the sample rate
is given by Ts.

2.3 Pressure Sensors

Small autopilots typically have two pressure sensors: a static pressure sensor
which is used to measure altitude, and a dynamic pressure sensor which is
used to measure airspeed. These sensors will be discussed in the following two
sections.

Altitude Sensor

Pressure is a measure of force per unit area or

P =
F

A
,

where P is the pressure, F is the force, and A is the area. The static pressure
at a particular altitude is determined by the force exerted by a column of air
at that altitude:

P =
mcolumng

A
,

where mcolumn is the mass of the column of air, g is the gravitational constant,
and A is the area upon which the column is exerting pressure. The density of
air is the mass per unit volume. Since the volume is given by the area times
the height we get

P = ρhg,

where ρ is the density of air and h is the altitude [8, 11].
Therefore, the output of the static pressure sensor is given by

ystatic pres = ρgh + βstatic pres + ηstatic pres,

where βstatic pres is a slowly varying bias and ηstatic pres is a zero mean Gaussian
process. To remove the bias, we collect multiple measurements of the pressure
on the ground and average to remove the Gaussian noise to obtain
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ȳstatic pres(hground ) = ρghground + βstatic pres.

If we know the altitude of the ground station above sea level and the
density of the surrounding air, then the bias βstatic pres can be determined. If,
on the other hand, we are interested in the height above the ground station
then we can subtract the calibrated ground measurement to obtain

ystatic pres(∆h)
4
= ystatic pres(h)− ȳstatic pres(hground)
= ρg(h− hground) + ηstatic pres(t),
= ρg∆h + ηstatic pres(t),

where ∆h is the height above the ground station.

Air Speed Sensor

When the UAV is in motion, the atmosphere exerts dynamic pressure on the
UAV parallel to the direction of flow. The dynamic pressure is given by [8]

PI =
1
2
ρV 2

a ,

where Va is the airspeed of the UAV. Bernoulli’s theorem states that [8]

Ps = PI + PO,

where Ps is the total pressure, and PO is the static pressure.
Therefore, the output of the differential pressure sensor is

ydiff pres = Ps − PO + ηdiff pres

=
1
2
ρV 2

a + ηdiff pres(t),

where ηdiff pres is a zero mean Gaussian process with known variance.
The static and differential pressure sensors are analog devices that are

sampled by the on-board processer. We will assume that the sample rate is
given by Ts.

2.4 GPS

There are several sources of GPS error. Table 1 lists the sources of error and
the respective error budget. The data was obtained from
http://www.montana.edu/places/gps/lres357/slides/GPSaccuracy.ppt.

The current weather affects the speed of light in the atmosphere. However,
this inaccuracy should be relatively constant for a given day. We will model
the effect of the atmosphere by a random variable drawn from a Gaussian
distribution with a standard deviation equal to 5 meters.
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Effect Ave. Horizontal Error Ave. Vertical Error

Atmosphere 5.5 meters 5.5 meters

Satellite Geometry (Ephemeris) data 2.5 meters 15 meters

Satellite clock drift 1.5 meters 1.5 meters

Multipath 0.6 meters 0.6 meters

Measurement noise 0.3 meters 0.3 meters

Table 1. This table lists average error estimates for commercial grade GPS units.
Atmosphere, satellite geometry, clock drift, and multipath produce a near constant
bias term. The measurement noise is modeled as an additive Gaussian process.

The geometry of the Satellites viewed by the receiver is used to triangulate
the location of the GPS receiver. Triangulation is much more effective in the
horizontal plane than in the vertical direction. The satellite geometry is slowly
changing in time. Therefore we will measure the effect of satellite geometry
as a sinusoid with amplitude equal to 2.5

√
2 (RMS=2.5), with a constant but

unknown frequency ωgeometry and a phase that is a random variable drawn
from a uniform distribution over [−π, π].

We will assume that the clock drift is relatively constant over time. There-
fore, we will model the clock drift by a constant random variable drawn from
a Gaussian distribution with standard deviation of 1.5 meters.

Multipath is a function of the position of the UAV. Therefore we will
assume that the error is a sinusoidal signal with a magnitude of 0.6

√
2, a

frequency equal to ωmultipath and a random phase drawn from a uniform dis-
tribution over [−π, π].

We will model the measurement noise as a zero mean Gaussian process
with a variance equal to 0.3 meters. The model for the GPS signal is therefore
given by

yGPS,n(t) = pn + νn,atmosphere + νclock + ηn,measurement(t)

+ 2.5
√

2 sin(ωgeometryt + νn,geometry) + 0.6
√

2 sin(ωmultipatht + νn,multipath)
yGPS,e(t) = pe + νe,atmosphere + νe,clock + ηe,measurement(t)

+ 2.5
√

2 sin(ωgeometryt + νe,geometry) + 0.6
√

2 sin(ωmultipatht + νe,multipath)
yGPS,h(t) = h + νh,atmosphere + νh,clock + ηh,measurement(t),

+ 15
√

2 sin(ωgeometryt + νh,geometry) + 0.6
√

2 sin(ωmultipatht + νh,multipath),

where pn, pe, and h are the actual earth coordinates and altitude above sea
level respectively. The GPS receiver also computes estimated ground speed
and heading from the measurements listed above. Accordingly, we have

yGPS,Vg =

√(
yGPS,n(t + Ts)− yGPS,n(t)

Ts

)2

+
(

yGPS,e(t + Ts)− yGPS,e(t)
Ts

)2

yGPS,course = tan−1

(
yGPS,e(t + Ts)− yGPS,e(t)
yGPS,n(t + Ts)− yGPS,n(t)

)
.
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The update rate of a GPS receiver is typically on the order of TGPS = 1
second. However, the update rate can vary between 0.1−2 seconds, depending
on the GPS receiver.

3 Simulation Environment

We will illustrate the quality of the state estimation techniques proposed in
this chapter via simulation. This section briefly describes the simulation en-
vironment which is a six degree-of-freedom nonlinear flight simulator called
Aviones, developed at Brigham Young University using C/C++, and which
runs on the Microsoft Windows operating system. The sensor models de-
scribed in the previous section were implemented in Aviones using the pa-
rameters shown in Table 2. We have assumed that sensor biases are estimated
before flight and are therefore not included in the simulator, with the excep-
tion of GPS, where it is not possible to estimate the biases.

Parameter Value Units

σgyro,x 0.005 rad/sec
σgyro,y 0.005 rad/sec
σgyro,z 0.005 rad/sec
σacc,x 0.005 m/sec2

σacc,y 0.005 m/sec2

σacc,z 0.005 m/sec2

σstatic pres 0.4 meters
σdiff pres 0.4 meters/sec
σmag,x 500 nanotesla
σmag,y 500 nanotesla
σmag,z 500 nanotesla
σGPS,n 0.5 meters
σGPS,e 0.5 meters
σGPS,h 0.5 meters
ν̄atmosphere 5.5 meters
ν̄clock 1.5 meters
ν̄geometry 2.5 meters
ν̄multipath 0.6 meters

Table 2. Sensor parameters used in the Aviones flight simulator. σ∗ denote the
variance of a zero mean Gaussian process. ν∗ denotes a random variable drawn
uniformly from the set [0, ν̄∗].

The state estimate plots shown in this chapter are all associated with a
similar flight trajectory which was dictated by the following autopilot com-
mands (using full state feedback).

• Throughout maneuver:
Hold airspeed at 10.0 m/s.
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• 0 ≤ t ≤ 2.5 seconds:
Hold a pitch angle of 20 degrees.
Hold a roll angle of 30 degrees.

• 2.5 ≤ t ≤ 5.0 seconds:
Hold a pitch angle of −20 degrees.
Hold a roll angle of 0 degrees.

• 5.0 ≤ t ≤ 8.0 seconds:
Hold a pitch angle of 20 degrees.
Hold a roll angle of −30 degrees.

• 8.0 ≤ t ≤ 10.0 seconds:
Hold a pitch angle of −20 degrees.
Hold a roll angle of 0 degrees.

• 8.0 ≤ t ≤ 10.0 seconds:
Hold a pitch angle of −20 degrees.
Hold a roll angle of 0 degrees.

• 10.0 ≤ t ≤ 13.0 seconds:
Hold a pitch angle of 20 degrees.
Hold a roll angle of 30 degrees.

• 13.0 ≤ t ≤ 30.0 seconds:
Hold a pitch angle of 0 degrees.
Hold a roll angle of 0 degrees.

A plot of the state variables during this maneuver is shown in Figure 2.

4 State Estimation via Model Inversion

The objective of this section is to demonstrate that computationally simple
state estimation models can be derived by inverting the sensor models. As we
shall demonstrate, the quality of the estimates produced by this method is,
unfortunately, relatively poor for some of the states.

4.1 Low Pass Filters

All of the state estimation schemes require low-pass filtering of the sensor
signals. For completeness, we will briefly discuss digital implementation of a
first order low-pass filter.

The Laplace transform representation of a simple unity DC gain low-pass
filter is given by

Y (s) = C(s)U(s)
4
=

a

s + a
U(s),

were u(t) is the input of the filter and y(t) is the output. Taking the inverse
Laplace transform we obtain

ẏ = −ay + au. (9)
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Fig. 2. Actual states during the simulated test maneuver used throughout the
article. The positions pn and pe are in units of meters from home base, h is in units
of meters above sea level, Va is in meters/sec, p, q, and r are in units of degrees/sec,
and φ, θ, and ψ are in units of degrees.

By introducing an integrating factor, it is straightforward to show that the
solution to this differential equation is given by

y(t + T ) = e−aT y(t) + a

∫ T

0

e−a(T−τ)u(τ) dτ.

Assuming that u(t) is constant between sample periods results in the expres-
sion

y(t + T ) = e−aT y(t) + a

∫ T

0

e−a(T−τ) dτu(t)

= e−aT y(t) + (1− e−aT )u(t). (10)

Note that this equation has a nice physical interpretation: the new value of
y (filtered value) is a weighted average of the old value of y and u (unfil-
tered value). We will use the notation C(s){·} to represent the low-pass filter
operator. Therefore x̂ = C(s){x} is the low-pass filtered version of x.

4.2 State Estimation by Inverting the Sensor Model

In this section we will derive the simplest possible state estimation scheme
based on inverting the sensor models. While this method is effective for angu-
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lar rates, altitude, and airspeed, it is not effective for estimating the position
and Euler angles.

Position and Heading

The position variables pn, pe and the course heading χ can be estimated by
low-pass filtering the GPS signals:

p̂n = C(s){yGPS,n} (11)
p̂e = C(s){yGPS,e} (12)
χ̂ = C(s){yGPS,course}. (13)

Figure 3 shows the actual and estimated states using this scheme. Note
that since the measurements are only received every second, the estimates
have a sampled data characteristic that includes significant delay.
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χ (deg)

time(sec)
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Fig. 3. Actual and estimated values of pn, pe, and h after low pass filtering the GPS
sensor. The actual and estimated values of χ are wrapped so that they lie between
±180 degrees.

Angular Rates

Similarly, the angular rates p, q, and r can be estimated by low-pass filtering
the rate gyro signals:
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p̂ = C(s){ygyro,x}/kgyro,x (14)
q̂ = C(s){ygyro,y}/kgyro,y (15)
r̂ = C(s){ygyro,z}/kgyro,z. (16)

Figure 4 shows the actual and estimated states using this scheme. Note
that low pass filtering the rate gyros results in acceptable estimates of p, q,
and r.
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Fig. 4. Actual and estimated values of the angular rates p, q, and r after low pass
filtering the rate gyros.

Altitude

GPS is not accurate enough to estimate the altitude. Therefore, we will use
the absolute pressure sensor. Recall that

ystatic pressure = ρg(h− hground) + ηstatic pressure.

Therefore, a simple estimation scheme is

ĥ = hground +
C(s){ystatic pressure}

ρg
. (17)

Airspeed

Recall that
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ydiff pres =
1
2
ρV 2

a + ηdiff pres.

Therefore, a simple estimation scheme is

V̂a =
√

2
ρ
C(s){ydiff pres}. (18)

Figure 5 shows the actual and estimated altitude and airspeed using this
scheme. Again note that inverting the sensor models results in acceptable
estimates of altitude and airspeed.
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Fig. 5. Actual and estimated values of h and Va after low pass filtering the pressure
sensors and inverting their models.

Roll and Pitch Angles

Roll and pitch angles are the most difficult variables to estimate well on small
UAVs. A simple scheme, that works in unaccelerated flight, can be derived as
follows. Recalling that

yaccel,x =
u̇ + qw − rv + g sin θ

g
+ ηaccel,x

yaccel,y =
v̇ + ru− pw − g cos θ sin φ

g
+ ηaccel,y

yaccel,z =
ẇ + pv − qu− g cos θ cosφ

g
+ ηaccel,z.



State Estimation for Micro Air Vehicles 15

and that in unaccelerated flight u̇ = v̇ = ẇ = p = q = r = 0, gives

C(s){yaccel,x} = sin θ

C(s){yaccel,y} = − cos θ sin φ

C(s){yaccel,z} = − cos θ cosφ.

Solving for φ and θ we get

φ̂accel = tan−1

(
C(s){yaccel,y}
C(s){yaccel,z}

)
(19)

θ̂accel = tan−1

(
C(s){yaccel,x}√

C(s){yaccel,y}2 + C(s){yaccel,z}2

)
. (20)

Figure 6 shows the actual and estimated roll and pitch angles during the
sample trajectory using this scheme. Note that the sample trajectory severely
violates the unaccelerated flight assumptions. Clearly, model inversion does
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Fig. 6. Actual and estimated values of roll angle φ and pitch angle θ using simple
model inversion.

not work well for attitude estimation during accelerated flight. Another idea
is to combine model inversion with the integral of roll and pitch as estimated
by the rate gyros.

Recalling that

φ̇ = p + q sin φ tan θ + r cos φ tan θ

θ̇ = q cos φ− r sinφ
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and assuming that φ ≈ 0 and θ ≈ 0 we get

φ̇ = p

θ̇ = q.

Therefore we can integrate these equations to obtain an additional estimate
of φ and θ:

φ̂int =
∫ t

−∞
p(τ) dτ

θ̂int =
∫ t

−∞
q(τ) dτ.

Combining the estimate from the integrator and the accelerometers we obtain

φ̂ = κφ̂int + (1− κ)φ̂accel

θ̂ = κθ̂int + (1− κ)θ̂accel,

where κ ∈ (0, 1).
Figure 7 shows the actual and estimated roll and pitch angles using this

scheme. It can be observed that the integration of the rate gyros causes a drift
in the estimate of φ and θ.
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Fig. 7. Actual and estimated values of roll angle φ and pitch angle θ combining
model inversion with the integral of the rate gyros.

While low pass filtering and model inversion work well for estimates of p,
q, r, Va and h, we need more sophisticated techniques to adequately estimate
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pn, pe, χ, φ, and θ. In Section 5 we will review the basics of Kalman filter
theory. In Section 6 we use two extended Kalman filters to obtain estimates
for pn, pe, χ, φ, and θ.

5 The Continuous-Discrete Kalman Filter

The objective of this section is to give a brief review of Kalman filter theory.
There are many excellent references on Kalman filtering including [12, 13, 14,
16, 5]. We will provide a brief derivation and then focus on the application of
the Kalman filter to UAV state estimation.

5.1 Dynamic Observer Theory

As a first step in deriving the Kalman filter, we briefly review dynamic observer
theory. Consider the linear time-invariant system modeled by the equations

ẋ = Ax + Bu

y = Cx.

A continuous-time observer for this system is given by the equation

˙̂x = Ax̂ + Bu︸ ︷︷ ︸ + L (y − Cx̂)︸ ︷︷ ︸, (21)

copy of the model correction due to sensor reading

where x̂ is the estimated value of x. Letting x̃ = x− x̂ we get that

˙̃x = (A− LC)x̃

which implies that the observation error decays exponentially to zero if L is
chosen such that the matrix A− LC is Hurwitz [20].

In practice, the sensors are usually sampled and processed in digital hard-
ware at a sample rate Ts. How should the observer equation shown in Eq. (21)
be modified to account for sampled sensor readings? The typical approach is
to propagate the system model between samples using the equation

˙̂x = Ax̂ + Bu (22)

and then to update the estimate when a measurement is received using the
equation

x̂+ = x̂− + L(y(tk)− Cx̂−), (23)

where tk is the instant in time that the measurement is received and x̂− is
the state estimate produced by Eq. (22) at time tk. Equation (22) is then
re-instantiated with initial conditions given by x̂+. The continuous-discrete
observer is summarized in Table 3 [16]. The observation process is shown
graphically in Figure 8. Note that a fixed sample rate is not required. The
continuous-discrete observer can be implemented using Algorithm 1 which is
listed below.
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System model:
ẋ = Ax + Bu
y(tk) = Cx(tk)
Initial Condition x(0).

Assumptions:
Knowledge of A, B, C, u(t).
No measurement noise.

In between measurements (t ∈ [tk−1, tk)):

Propagate ˙̂x = Ax̂ + Bu.
Initial condition is x̂+(tk−1).
Label the estimate at time tk as x̂−(tk).

At sensor measurement (t = tk):
x̂+(tk) = x̂−(tk) + L

`
y(tk)− Cx̂−(tk)

´
.

Table 3. Continuous-discrete observer for linear time-invariant systems.

Fig. 8. This figure shows qualitatively the evolution of the state estimate. The
solid line represents the actual state variable and the dashed line represents the
state estimate. Measurements are received at discrete times denoted by ti. Between
measurements, the state estimate is computed by propagating the state model. At
the measurements, the estimate is updated via a weighted average of the current
estimate and the measurement.

5.2 Essentials from Probability Theory

Let X = (x1, . . . , xn)T be a vector whose elements are random variables. The
mean, or expected value of X is denoted by

µ =




µ1

...
µn


 =




E{x1}
...

E{xn}


 = E{X},

where
E{xi} =

∫
ξfi(ξ) dξ,
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Algorithm 1 Continuous-Discrete Observer
1: Initialize: x̂ = 0.
2: Pick an output sample rate Tout which is much less than the sample rates of the

sensors.
3: At each sample time Tout:
4: for i = 1 to N do {Propagate the state equation.}
5: x̂ = x̂ +

`
Tout

N

´
(Ax̂ + Bu)

6: end for
7: if A measurement has been received from sensor i then {Measurement Update}
8: x̂ = x̂ + Li (yi − Cix̂)
9: end if

and f(·) is the probability density function for xi. Given any pair of compo-
nents xi and xj of X, we denote their covariance as

cov(xi, xj) = Σij = E{(xi − µi)(xj − µj)}.

The covariance of any component with itself is the variance, i.e.,

var(xi) = cov(xi, xi) = Σii = E{(xi − µi)(xi − µi)}.

The standard deviation of xi is the square root of the variance:

stdev(xi) = σi =
√

Σii.

The covariances associated with a random vector X can be grouped into a
matrix known as the covariance matrix:

Σ =




Σ11 Σ12 · · · Σ1n

Σ21 Σ22 · · · Σ2n

...
. . .

...
Σn1 Σn2 · · · Σnn


 = E{(X − µ)(X − µ)T } = E{XXT } − µµT .

Note that Σ = ΣT so that Σ is both symmetric and positive semi-definite,
which implies that its eigenvalues are real and nonnegative.

The probability density function for a Gaussian random vector is given by

fX(X) =
1√

2π det Σ
exp

[
−1

2
(X − µ)T Σ−1(X − µ)

]
,

in which case we write
X ∼ N (µ, Σ) ,

and say that X is normally distributed with mean µ and covariance Σ. Fig-
ure 9 shows the level curves for a 2D Gaussian random variable with different
covariance matrices.
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Fig. 9. Level curves for the pdf of a 2D Gaussian random variable. On the left is
the pdf when the covariance matrix is diagonal with Σ11 < Σ22. In the middle is a
pdf when Σ22 < Σ11. On the right is a pdf for general Σ = ΣT > 0. The eigenvalues
and eigenvectors of Σ define the major and minor axes of the level curves of the pdf.

5.3 Continuous-Discrete Kalman Filter

In this section we assume the following state model:

ẋ = Ax + Bu + Gξ (24)
yk = Cxk + ηk,

where yk = y(tk) is the kth sample of y, xk = x(tk) is the kth sample of x, ηk

is the measurement noise at time tk, ξ is a zero-mean Gaussian process with
covariance Q, and ηk is a zero-mean Gaussian random variable with covariance
R. Note that the sample rate does not need to be be fixed. The covariance
R can usually be estimated from sensor calibration, but the covariance Q is
generally unknown and therefore becomes a system gain that can be tuned to
improve the performance of the observer.

We will use the observer given by Eqs. (22) and (23). Define the estimation
error as x̃ = x− x̂. The covariance of the estimation error is given by

P (t) = E{x̃(t)x̃(t)T }.

Note that P (t) is symmetric and positive semi-definite, therefore its eigen-
values are real and non-negative. Also small eigenvalues of P (t) imply small
variance, which implies low average estimation error. Therefore, we would like
to choose L to minimize the eigenvalues of P (t). Recall that

tr(P ) =
n∑

i=1

λi,

where tr(P ) is the trace of P and λi are the eigenvalues. Therefore, minimizing
tr(P ) minimizes the estimation error covariance. Our objective is to pick the
estimation gain L in Table 3 to minimize tr(P (t)).
Between Measurements.
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Differentiating x̃ we get

˙̃x = ẋ− ˙̂x
= Ax + Bu + Gξ −Ax̂−Bu

= Ax̃ + Gξ,

which implies that

x̃(t) = eAtx̃0 +
∫ t

0

eA(t−τ)Gξ(τ) dτ.

We can compute the evolution for P as

Ṗ =
d

dt
E{x̃x̃T }

= E{ ˙̃xx̃T + x̃ ˙̃xT }
= E

{
Ax̃x̃T + Gξx̃T + x̃x̃T AT + x̃ξT GT

}

= AP + PAT + GE{ξx̃T }T + E{x̃ξT }GT ,

where

E{ξx̃T } = E

{
ξ(t)x̃0e

AT t +
∫ t

0

ξ(t)ξT (τ)GT eAT (t−τ) dτ

}

=
1
2
QGT ,

which implies that
Ṗ = AP + PAT + GQGT .

At Measurements.
At a measurement we have that

x̃+ = x− x̂+

= x− x̂− − L
(
Cx + η − Cx̂−

)

= x̃− − LCx̃− − Lη.

Therefore

P+ = E{x̃+x̃+T }
= E

{(
x̃− − LCx̃− − Lη

) (
x̃− − LCx̃− − Lη

)T
}

= E
{
x̃−x̃−T − x̃−x̃−T CT LT − x̃−ηT LT

− LCx̃−x̃−T + LCx̃−x̃−T CT LT + LCx̃−ηT LT

= −Lηx̃−T + Lηx̃−T CT LT + LηηT LT
}

= P− − P−CT LT − LCP− + LCP−CT LT + LRLT . (25)
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Our objective is to pick L to minimize tr(P+). A necessary condition is

∂

∂L
tr(P+) = −P−CT − P−CT + 2LCP−CT + 2LR = 0

=⇒ 2L(R + CP−CT ) = 2P−CT

=⇒ L = P−CT (R + CP−CT )−1.

Plugging back into Eq. (25) give

P+ = P− + P−CT (R + CP−CT )−1CP− − P−CT (R + CP−CT )−1CP−

+ P−CT (R + CP−CT )−1(CP−CT + R)(R + CP−CT )−1CP−

= P− − P−CT (R + CP−CT )−1CP−

= (I − P−CT (R + CP−CT )−1C)P−

= (I − LC)P−.

Extended Kalman Filter.
If instead of the linear state model given in (24), the system is nonlinear,

i.e.,

ẋ = f(x, u) + Gξ (26)
yk = h(xk) + ηk,

then the system matrices A and C required in the update of the error covari-
ance P are computed as

A(x) =
∂f

∂x
(x)

C(x) =
∂h

∂x
(x).

The extended Kalman filter (EKF) for continuous-discrete systems is given
by Algorithm 2.

6 Application of the EKF to UAV State Estimation

In this section we will use the continuous-discrete extended Kalman filter
to improve estimates of roll and pitch (Section 6.1) and position and course
(Section 6.2).

6.1 Roll and Pitch Estimation

From Eq. 3, the equations of motion for φ and θ are given by
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Algorithm 2 Continuous-Discrete Extended Kalman Filter
1: Initialize: x̂ = 0.
2: Pick an output sample rate Tout which is much less than the sample rates of the

sensors.
3: At each sample time Tout:
4: for i = 1 to N do {Propagate the equations.}
5: x̂ = x̂ +

`
Tout

N

´
f(x̂, u)

6: A = ∂f
∂x

(x̂)
7: P = P +

`
Tout

N

´ `
AP + PAT + GQGT

´
8: end for
9: if A measurement has been received from sensor i then {Measurement Update}

10: Ci = ∂hi
∂x

(x̂)
11: Li = PCT

i (Ri + CiPCT
i )−1

12: P = (I − LiCi)P
13: x̂ = x̂ + Li (yi − Cix̂).
14: end if

φ̇ = p + q sin φ tan θ + r cos φ tan θ + ξφ

θ̇ = q cos φ− r sin φ + ξθ,

where we have added the noise terms ξφ ∼ N (0, Qφ) and ξθ ∼ N (0, Qθ) to
model the sensor noise on p, q, and r. We will use the accelerometers as the
output equations. From Eq. (7), the output of the accelerometers is given by

yaccel =




u̇+gw−rv
g + sin θ

v̇+ru−pw
g − cos θ sin φ

ẇ+pv−qu
g − cos θ cos φ


 + ηaccel. (27)

However since we do not have a method for directly measuring u̇, v̇, ẇ, u,
v, and w, we will assume that u̇ = v̇ = ẇ ≈ 0 and we will use Eq. (1) and
assume that α ≈ θ and β ≈ 0 to obtain




u
v
w


 ≈ Va




cos θ
0

sin θ


 .

Substituting into Eq. (27) gives

yaccel =




qVa sin θ
g + sin θ

rVa cos θ−pVa sin θ
g − cos θ sin φ

−qVa cos θ
g − cos θ cos φ


 + ηaccel.

Letting x = (φ, θ)T , u = (p, q, r, Va)T , ξ = (ξφ, ξθ)T , and η = (ηφ, ηθ)T , we get
the nonlinear state equation

ẋ = f(x, u) + ξ

y = h(x, u) + η,
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where

f(x, u) =
(

p + q sin φ tan θ + r cos φ tan θ
q cosφ− r sin φ

)

h(x, u) =




qVa sin θ
g + sin θ

rVa cos θ−pVa sin θ
g − cos θ sin φ

−qVa cos θ
g − cos θ cosφ


 .

Implementation of the extended Kalman filter requires the Jacobians

∂f

∂x
=

(
q cos φ tan θ − r sinφ tan θ q sin φ−r cos φ

cos2 θ
−q sin φ− r cos φ 0

)

∂h

∂x
=




0 qVa

g cos θ + cos θ

− cos φ cos θ − rVa

g sin θ − pVa

g cos θ + sin φ sin θ

sin φ cos θ
(

qVa

g + cos φ
)

sin θ


 .

The state estimation algorithm is given by Algorithm 2.
Figure 10 shows the actual and estimated roll and pitch attitudes obtained

by using this scheme, where we note significant improvement over the results
shown in Figures 6 and 7. The estimates are still not precise due to the
approximation that u̇ = v̇ = ẇ = β = θ − α = 0. However, the results are
adequate enough to enable non-aggressive MAV maneuvers.
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Fig. 10. Actual and estimated values of φ and θ using the continuous-discrete
extended Kalman filter.
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6.2 Position and Course Estimation

The objective in this section is to estimate pn, pe, and χ using the GPS sensor.
From Eq. (3), the model for χ is given by

χ̇ = ψ̇ = q
sin φ

cos θ
+ r

cosφ

cos θ
.

Using Eqs. (4) and (5) for the evolution of pn and pe results in the system
model




ṗN

ṗE

χ̇


 =




Vg cos χ
Vg sinχ

q sin φ
cos θ + r cos φ

cos θ


 + ξp

4
= f(x, u) + ξp,

where x = (pn, pe, χ)T , u = (Vg, q, r, φ, θ)T and ξp ∼ N (0, Q).
GPS returns measurements of pn, pe, and χ directly. Therefore we will

assume the output model

yGPS =




pn

pe

χ


 + ηp,

where ηp ∼ N (0, R) and C = I, and where we have ignored the GPS bias
terms. To implement the extended Kalman filter in Algorithm 2 we need the
Jacobian of f which can be calculated as

∂f

∂x
=




0 0 −Vg sin χ
0 0 Vg cosχ
0 0 0


 .

Figure 10 shows the actual and estimated values for pn, pe, and χ obtained
by using this scheme. The inaccuracy in the estimates of pn and pe is due to
the GPS bias terms that have been neglected in the system model. Again,
these results are sufficient to enable non-aggressive maneuvers.

7 Summary

Micro air vehicles are increasingly important in both military and civil applica-
tions. The design of intelligent vehicle control software pre-supposes accurate
state estimation techniques. However, the limited computational resources
on board the MAV require computationally simple, yet effective, state es-
timation algorithms. In this chapter we have derived mathematical models
for the sensors commonly deployed on MAVs. We have also proposed sim-
ple state estimation techniques that have been successfully used in thousands
of hours of actual flight tests using the Procerus Kestrel autopilot (see for
example [7, 6, 21, 10, 17, 18]).
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Fig. 11. Actual and estimated values of pn, pe, and χ using the continuous-discrete
extended Kalman filter.
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